ANDHRA PRADESH STATE COUNCIL OF HIGHER EDUCATION
(A Statutory body of the Government of Andhra Pradesh)
Revised UG Syllabus Under CBCS
(Implemented from Academic Year 2020-21)
PROGRAMME: FOUR YEAR B.Sc. (Hons)
Domain Subject: COMPUTER SCIENCE

Skill Enhancement Courses (SECs) for Semester V, from 2022-23 (Syllabus with Learning Outcomes, References, Co-curricular Activities)

Structure of SECs for Semester – V
(To choose one pair from the three alternate pairs of SECs)

<table>
<thead>
<tr>
<th>Univ Code</th>
<th>Course Number 6 & 7</th>
<th>Name of Course</th>
<th>Hours/ Week Theo+Prac</th>
<th>Credits Theo+Prac</th>
<th>Marks</th>
<th>IA – 20 Filed Work 05</th>
<th>Sem End</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Web Interface Designing Technologies</td>
<td>3 + 3</td>
<td>3+ 2</td>
<td>25</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>6A</td>
<td></td>
<td>Web Applications Development using PHP& MYSQL</td>
<td>3 + 3</td>
<td>3 + 2</td>
<td>25</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>7A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internet of Things</td>
<td>3 + 3</td>
<td>3 + 2</td>
<td>25</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>6B</td>
<td></td>
<td>Application Development using Python</td>
<td>3 + 3</td>
<td>3 + 2</td>
<td>25</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>7B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Data science</td>
<td>3 + 3</td>
<td>3 + 2</td>
<td>25</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>6C</td>
<td></td>
<td>Python for Data science</td>
<td>3 + 3</td>
<td>3 + 2</td>
<td>25</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>7C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note-1: For Semester–V, for the domain subject Computer Science any one of the three pairs of SECs shall be chosen as courses 6 and 7, i.e., 6A & 7A or 6B & 7B or 6C & 7C. The pair shall not be broken (ABCD allotment is random, not on any priority basis).

Note-2: One of the main objectives of Skill Enhancement Courses (SEC) is to inculcate field related skills of the domain subject in students. The syllabus of SEC will be partially skill oriented. Hence, teachers shall also impart practical training to students on the skills embedded in syllabus citing related real field situations.
A.P. State Council of Higher Education
Semester-wise Revised Syllabus under CBCS, 2020-21
Course Code:

Four-year B.Sc.(Hons)
Domain Subject: **Computer Science**
IV Year B. Sc.(Hons) – Semester – V
Max Marks: 100 + 50

Course 6A: Web Interface Designing Technologies
(Skill Enhancement Course (Elective), Credits: 05)

I. **Learning Outcomes:** Students after successful completion of the course will be able to:

1. Understand and appreciate the web architecture and services.
2. Gain knowledge about various components of a website.
3. Demonstrate skills regarding creation of a static website and an interface to dynamic website.
4. Learn how to install word press and gain the knowledge of installing various plugins to use in their websites.

II. **Syllabus:** *(Total Hours: 90 including Teaching, Lab, and Field training, Unit tests etc.)*

Unit - I (10 hours)

HTML: Introduction to web designing, difference between web applications and desktop applications, introduction to HTML, HTML structure, elements, attributes, headings, paragraphs, styles, colours, HTML formatting, Quotations, Comments, images, tables, lists, blocks and classes, HTML CSS, HTML frames, file paths, layout, symbols, HTML responsive.

Unit – II (10 hours)

HTML forms: HTML form elements, input types, input attributes, HTML5, HTML graphics, HTML media – video, audio, plug INS, you tube.

HTML API’S: Geo location, Drag/drop, local storage, HTML SSE.

CSS: CSS home, introduction, syntax, colours, back ground, borders, margins, padding, height/width, text, fonts, icons, tables, lists, position, over flow, float, CSS combinators, pseudo class, pseudo elements, opacity, tool tips, image gallery, CSS forms, CSS counters, CSS responsive.

Unit – III (10 hours)

Client side Validation: Introduction to JavaScript - What is DHTML, JavaScript, basics, variables, string manipulations, mathematical functions, statements, operators, arrays, functions. Objects in JavaScript - Data and objects in JavaScript, regular expressions, exception handling. DHTML with JavaScript - Data validation, opening a new window, messages and confirmations, the status bar, different frames, rollover buttons, moving images.

Unit – IV (10 hours)

Word press: Introduction to word press, servers like wamp, bitnami e.tc, installing and configuring word press, understanding admin panel, working with posts and pages, using editor, text formatting with shortcuts, working with media-Adding, editing, deleting media elements, working with widgets, menus.
Unit – V (10 hours)

Working with themes-parent and child themes, using featured images, configuring settings, user and user roles and profiles, adding external links, extending word press with plug-ins. Customizing the site, changing the appearance of site using css, protecting word press website from hackers.

III. References

3. Head First HTML and CSS, Elisabeth Robson, Eric Freeman, O’Reilly Media Inc.
5. Schaum's Easy Outline HTML, David Mercer, Mcgraw Hill Professional.
6. Word press for Beginners, Dr. Andy Williams.
7. Professional word press, Brad Williams, David damstra, Hanstern.
8. Web resources:
 b. http://www.w3schools.com
 c. https://www.w3schools.in/wordpress-tutorial/
 d. http://www.homeandlearn.co.uk
9. Other web sources suggested by the teacher concerned and the college librarian including reading material.

IV. Co-Curricular Activities

a) Mandatory: (Training of students by teacher in field related skills: (lab: 10 + field: 05) :

1. For Teacher: Field related training of students by the teacher in laboratory/field for not less than 15 hours on identifying the case study to build a website, designing the format, structure, menus, submenus etc for a website and finally to build a website.
2. For Student: Students shall (individually) search online and visit any of the agencies like hotels, hospitals, super bazaars, organizations, etc. where there is a need for a website and identify any one case study and submit a hand-written Fieldwork/Project work/Project Report not exceeding 10 pages. Example: Choosing a firm or business to develop a website, identifying various business entities to be included in the website, identifying menu bar and content to be placed in their websites.
3. Max marks for Fieldwork/Project work/Project work/Project work/Project work Report: 05.
4. Suggested Format for Fieldwork/Project work/Project work/Project work/Project work:
 Title page, student details, index page, details of place visited, observations, findings and acknowledgements.
5. Unit tests (IE).

b) Suggested Co-Curricular Activities

1. Build a website with 10 pages for the case study identified.
2. Training of students by related industrial experts.
3. Assignments
4. Seminars, Group discussions, Quiz, Debates etc. (on related topics).
5. Presentation by students on best websites.
Course 6A: Web Interface Designing Technologies – PRACTICAL SYLLABUS

V. Learning Outcomes:
On successful completion of this practical course, student shall be able to:
1. Create a basic website with the help of HTML and CSS.
2. Acquire the skill of installing word press and various plugins of Word press.
3. Create a static website with the help of Word press.
4. Create an interface for a dynamic website.
5. Apply various themes for their websites using Word press.

VI. Practical (Laboratory) Syllabus: (30 hrs.)

HTML and CSS:
1. Create an HTML document with the following formatting options:
 - (a) Bold, (b) Italics, (c) Underline, (d) Headings (Using H1 to H6 heading styles),
 (e) Font (Type, Size and Color), (f) Background (Colored background/Image in background),
 (g) Paragraph, (h) Line Break, (i) Horizontal Rule, (j) Pre tag

2. Create an HTML document which consists of:
 - (a) Ordered List (b) Unordered List (c) Nested List (d) Image

3. Create a Table with four rows and five columns. Place an image in one column.
4. Using “table” tag, align the images as follows:

5. Create a menu form using html.
6. Style the menu buttons using css.
7. Create a form using HTML which has the following types of controls:
 - (a) Text Box (b) Option/radio buttons (c) Check boxes (d) Reset and Submit buttons
8. Embed a calendar object in your web page.
9. Create an applet that accepts two numbers and perform all the arithmetic operations on them.

10. Create nested table to store your curriculum.

11. Create a form that accepts the information from the subscriber of a mailing system.

12. Design the page as follows:

![The BatMobile](image)

13. Create a help file as follows:

![Contents](image)

14. Create a webpage containing your bio data (assume the form and fields).

15. Write a html program including style sheets.

16. Write a html program to layers of information in web page.

17. Create a static webpage.
Word press:

18. Installation and configuration of word press.
19. Create a site and add a theme to it.
20 Create a child theme
21. Create five pages on COVID – 19 and link them to the home page.
22. Create a simple post with featured image.
23. Add an external video link with size 640 X 360.
24. Create a user and assign a role to him.
25. Create a login page to word press using custom links
26. Create a website for your college.
I. **Learning Outcomes:**

Students after successful completion of the course will be able to:

1. Write simple programs in PHP.
2. Understand how to use regular expressions, handle exceptions, and validate data using PHP.
3. Apply In-Built functions and Create User defined functions in PHP programming.
4. Write PHP scripts to handle HTML forms.
5. Write programs to create dynamic and interactive web based applications using PHP and MYSQL.
6. Know how to use PHP with a MySQL database and can write database driven web pages.

II. **Syllabus:** *(Total Hours: 90 including Teaching, Lab, and Field training, Unit tests etc.)*

Unit-1: (10 hours)

The Building blocks of PHP: Variables, Data Types, Operators and Expressions, Constants. Flow Control Functions in PHP: Switching Flow, Loops, Code Blocks and Browser Output. Working with Functions: What is function?, Calling functions, Defining Functions, Returning the values from User-Defined Functions, Variable Scope, Saving state between Function calls with the static statement, more about arguments.

Unit-2: (10 hours)

Unit-3: (10 hours)

Working with Forms: Creating Forms, Accessing Form Input with User defined Arrays, Combining HTML and PHP code on a single Page, Using Hidden Fields to save state, Redirecting the user, Sending Mail on Form Submission, and Working with File Uploads. Working with Cookies and User Sessions: Introducing Cookies, Setting a Cookie with PHP, Session Function Overview, Starting a Session, Working with session variables, passing session IDs in the Query String, Destroying Sessions and Unsetting Variables, Using Sessions in an Environment with Registered Users.

Unit-4: (10 hours)
Working with Files and Directories: Including Files with inclue(), Validating Files, Creating and Deleting Files, Opening a File for Writing, Reading or Appending, Reading from Files, Writing or Appending to a File, Working with Directories, Open Pipes to and from Process Using popen(), Running Commands with exec(), Running Commands with system() or passthru().

Unit-5: (10 hours)
Interacting with MySQL using PHP: MySQL Versus MySQLi Functions, Connecting to MySQL with PHP, Working with MySQL Data. Creating an Online Address Book: Planning and Creating Database Tables, Creating Menu, Creating Record Addition Mechanism, Viewing Records, Creating the Record Deletion Mechanism, Adding Sub-entities to a Record.

III. References

2. Steven Holzner , PHP: The Complete Reference, McGRAw-Hill
5. Web resources:
 f. http://www.w3schools.com/PHP
 g. http://www.tutorialpoint.com

6. Other web sources suggested by the teacher concerned and the college librarian including reading material.

IV. Co-Curricular Activities:

a) Mandatory: *(Training of students by teacher in field related skills: (lab: 10 + field: 05) :*
1. **For Teacher:** Field related training of students by the teacher in laboratory/field for not less than 15 hours on demonstrating various interactive and dynamic websites available online, addressing the students on identifying the case study to build an interactive and database driven website, forms to be used in website, database to be maintained, reports to be produced, etc.
2. **For Student:** Students shall (individually) search online and visit any of the agencies like malls, hotels, super bazaars, etc. where there is a need for an interactive and database driven website and submit a hand-written Fieldwork/Project work/Project work/Project work/Project work/Project work Report not exceeding 10 pages. Example: Choosing a firm or business to develop a website, identifying forms to be placed in the websites, back end databases to be maintained and reports to be generated and placed in the websites.
3. Max marks for Fieldwork/Project work/Project work/Project work/Project work/Project work Report: 05.
4. Suggested Format for Fieldwork/Project work/Project work/Project work/Project work:
Title page, student details, index page, details of place or websites visited, structure of the
website and acknowledgements.
5. Unit tests (IE).

b) Suggested Co-Curricular Activities
1. Arrange expert lectures by IT experts working professionally in the area of web content
development
2. Assignments (in writing or implementing contents related to syllabus or outside the
syllabus. Shall be individual and challenging)
3. Seminars, Group discussions, Quiz, Debates etc. (on related topics).
4. Preparation by students on best websites.
5. Arrange a webpage development competition among small groups of students.

Course 7A: Web Applications Development using PHP & MYSQL—
PRACTICAL SYLLABUS

V. Learning Outcomes:
On successful completion of this practical course, student shall be able to:
1. Write, debug and implement the Programs by applying concepts and error handling
techniques of PHP.
2. Create an interactive and dynamic website.
3. Create a website with reports generated from a database.
4. Write programs to create an interactive website for e-commerce sites like online
shopping, etc.

VI. Practical (Laboratory) Syllabus: (30 hrs.)
1. Write a PHP program to Display “Hello”
2. Write a PHP Program to display the today’s date.
3. Write a PHP program to display Fibonacci series.
4. Write a PHP Program to read the employee details.
5. Write a PHP program to prepare the student marks list.
6. Write a PHP program to generate the multiplication of two matrices.
7. Create student registration form using text box, check box, radio button, select,
submit button. And display user inserted value in new PHP page.
8. Create Website Registration Form using text box, check box, radio button, select,
submit button. And display user inserted value in new PHP page.
9. Write PHP script to demonstrate passing variables with cookies.
10. Write a program to keep track of how many times a visitor has loaded the page.
11. Write a PHP application to add new Rows in a Table.
12. Write a PHP application to modify the Rows in a Table.
13. Write a PHP application to delete the Rows from a Table.
14. Write a PHP application to fetch the Rows in a Table.
15. Develop an PHP application to implement the following Operations
i. Registration of Users.
ii. Insert the details of the Users.
iii. Modify the Details.
iv. Transaction Maintenance.
 a) No of times Logged in
 b) Time Spent on each login.
 c) Restrict the user for three trials only.
 d) Delete the user if he spent more than 100 Hrs of transaction.

16. Write a PHP script to connect MySQL server from your website.
17. Write a program to read customer information like cust-no, cust-name, item-purchased, and mob-no, from customer table and display all these information in table format on output screen.
18. Write a program to edit name of customer to “Kiran” with cust-no =1, and to delete record with cust-no=3.
19. Write a program to read employee information like emp-no, emp-name, designation and salary from EMP table and display all this information using table format in your website.
20. Create a dynamic web site using PHP and MySQL.
Course Code:
Four -year B.Sc.(Hons)
Domain Subject: Computer Science
IV Year B. Sc.(Hons) – Semester – V
Max Marks: 100 + 50

Course 6B: INTERNET OF THINGS
(Skill Enhancement Course (Elective), Credits: 05)

I. Learning Outcomes: Students after successful completion of the course will be able to:
1. Appreciate the technology for IoT
2. Understand various concepts, terminologies and architecture of IoT systems.
3. Understand various applications of IoT
4. Learn how to use various sensors and actuators for design of IoT.
5. Learn how to connect various things to Internet.
6. Learn the skills to develop simple IOT Devices.

II. Syllabus: (Total Hours: 90 including Teaching, Lab, Field training, Unit tests etc.)

Unit - I (10 hours)

Applications of IoT: Home Automation, Smart Cities, Energy, Retail Management, Logistics, Agriculture, Health and Lifestyle, Industrial IoT, Legal challenges, IoT design Ethics, IoT in Environmental Protection.

Unit - II (10 hours)

Unit - III (10 hours)
Wireless Technologies for IoT: WPAN Technologies for IoT: IEEE 802.15.4, Zigbee, HART, NFC, Z-Wave, BLE, Bacnet And Modbus. IP Based Protocols for IoT IPv6, 6LowPAN, LoRA, RPL, REST, AMPQ, CoAP, MQTT. Edge connectivity and protocols.

Unit - IV (10 hours)
Arduino Simulation Environment: Arduino Uno Architecture, Setting up the IDE, Writing Arduino Software. Arduino Libraries, Basics of Embedded C programming for Arduino, Interfacing LED, push button and buzzer with Arduino, Interfacing Arduino with LCD.

Unit - V (10 hours)
Developing IOT’s: Implementation of IoT with Arduino, Connecting and using various IoT Cloud Based Platforms such as Blynk, Thingspeak, AWS IoT, Google Cloud IoT Core etc. Cloud Computing, Fog Computing, Privacy and Security Issues in IoT.

III. References
13. Open source software / learning websites
 a. https://github.com/connectIOT/iottoolkit
 b. https://www.arduino.cc/
 c. https://onlinecourses.nptel.ac.in/noc17_cs22/course
 e. Contiki (Open source IoT operating system)
 f. Ardudroid (open source IoT project)
 g. https://blynk.io (Mobile app)
 h. IoT Toolkit (smart object API gateway service reference implementation)

6. Other web sources suggested by the teacher concerned and the college librarian including reading material.

IV. Co-Curricular Activities:
a) Mandatory: (Training of students by teacher in field related skills: (lab: 10 + field: 05) :
1. For Teacher: Field related training of students by the teacher in laboratory/field for not less than 15 hours on identifying the case study for the IoT, design an IoT solution, build physical IoT device, connect it to a mobile app and deploy the IoT device.
2. For Student: Students shall (individually) search online and visit any of the places like aquaculture farms, agencies using IoT devices, etc to identify problems for IoT solution and submit a hand-written Fieldwork/Project work/Project work/Project work/Project work Report not exceeding 10 pages. Example: Choosing a Problem for IoT solution (agriculture, aquaculture, smart home appliances, testing moisture levels, oxygen levels, etc), reasons why IoT solution is feasible for the said problem, material required, Design and architecture for the proposed IoT device, method of implementation and how to connect the device to mobile.
3. Max marks for Fieldwork/Project work/Project work/Project work/Project work/Project work Report: 05.
4. Suggested Format for Fieldwork/Project work/Project work/Project work/Project work: Title page, student details, index page, details of websites searched, place visited, observations, findings, proposed IOT problem, and design of the IOT device, implementation and acknowledgements.
5. Unit tests (IE).
b) Suggested Co-Curricular Activities
1. Training of students by related industrial experts.
2. Assignments
3. Preparation and presentation of power-point slides, which include videos, animations, pictures, graphics, etc by the students.
4. Seminars, Group discussions, Quiz, Debates etc. (on related topics).
5. Field visits to identify the problems for IoT solutions.

Course 6B: Internet of Things – PRACTICAL SYLLABUS

V. Learning Outcomes:
On successful completion of this practical course, student shall be able to:
1. Acquire the skills to design a small IoT device.
2. Connect various sensors, actuators, etc to Arduino board.
3. Connect the things to Internet
4. Design a small mobile app to control the sensors.
5. Deploy a simple IoT device.

VI. Practical (Laboratory) Syllabus: (30 hrs)
1. Understanding Arduino UNO Board and Components
2. Installing and work with Arduino IDE
3. Blinking LED sketch with Arduino
4. Simulation of 4-Way Traffic Light with Arduino
5. Using Pulse Width Modulation
6. LED Fade Sketch and Button Sketch
7. Analog Input Sketch (Bar Graph with LEDs and Potentiometre)
8. Digital Read Serial Sketch (Working with DHT/IR/Gas or Any other Sensor)
9. Working with Adafruit Libraries in Arduino
10. Spinning a DC Motor and Motor Speed Control Sketch
11. Working with Shields
12. Design APP using Blink App or Things peak API and connect it LED bulb.
13. Design APP Using Blynk App and Connect to Temperature, magnetic Sensors.
Course Code: Four-year B.Sc.(Hons)
Domain Subject: **Computer Science**
IV Year B. Sc.(Hons) – Semester – V
Max Marks: 100 + 50

Course 7B: APPLICATION DEVELOPMENT USING PYTHON
(Skill Enhancement Course (Elective), Credits: 05)

I. Learning Outcomes: Students after successful completion of the course will be able to:
1. Understand and appreciate the web architecture and services.
2. Examine Python syntax and semantics and be fluent in the use of Python flow control and functions.
3. Demonstrate proficiency in handling Strings and File Systems.
4. Create, run and manipulate Python Programs using core data structures like Lists, Dictionaries and use Regular Expressions.
5. Interpret the concepts of Object-Oriented Programming as used in Python.
6. Apply concepts of Python programming in various fields related to IOT, Web Services and Databases in Python.

II. Syllabus: *(Total Hours: 90 including Teaching, Lab, Field training, Unit tests etc.)*

Unit - I (10 hours)

Python basics, Objects- Python Objects, Standard Types, Other Built-in Types, Internal Types, Standard Type Operators, Standard Type Built-in Functions, Categorizing the Standard Types, Unsupported Types

Numbers - Introduction to Numbers, Integers, Floating Point Real Numbers, Complex Numbers, Operators, Built-in Functions, Related Modules

Sequences - Strings, Lists, and Tuples, Mapping and Set Types

Unit – II (10 hours)

Files: File Objects, File Built-in Function [open()], File Built-in Methods, File Built-in Attributes, Standard Files, Command-line Arguments, File System, File Execution, Persistent Storage Modules, Related Modules

Exceptions: Exceptions in Python, Detecting and Handling Exceptions, Context Management, Exceptions as Strings, Raising Exceptions, Assertions, Standard Exceptions, Creating Exceptions, Why Exceptions (Now)?, Why Exceptions at All?, Exceptions and the sys Module, Related Modules

Modules: Modules and Files, Namespaces, Importing Modules, Importing Module Attributes, Module Built-in Functions, Packages, Other Features of Modules

Unit – III (10 hours)

Unit – IV (10 hours)
GUI Programming: Introduction, Tkinter and Python Programming, Brief Tour of Other GUIs, Related Modules and Other GUIs

Unit – V (10 hours)

Database Programming: Introduction, Python Database Application Programmer’s Interface (DBAPI), Object Relational Managers (ORMs), Related Modules

III. References
2. Think Python, Allen Downey, Green Tea Press.
3. Introduction to Python, Kenneth A. Lambert, Cengage.
5. Learning Python, Mark Lutz, O’ Really.
6. Web sources suggested by the teacher concerned and the college librarian including reading material.

IV. Co-Curricular Activities:

a) Mandatory: (Training of students by teacher in field related skills: (lab: 10 + field: 05)
1. For Teacher: Training of students by the teacher in laboratory/field for not less than 15 hours on field related skills like building an IOT device with the help of Python.
2. For Student: Students shall (individually) identity the method to link their IOT project done in Paper 7A with Python and submit a hand-written Fieldwork/Project work/Project work/Project work/Project work/Project work Report not exceeding 10 pages. It should include a brief report on the selected case study of IOT device, algorithm and Python program to operate the IOT device.
3. Max marks for Fieldwork/Project work/Project work/Project work/Project work/Project work Report: 05.
4. Suggested Format for Fieldwork/Project work/Project work/Project work/Project work/Project work: Title page, student details, index page, design of the IOT device, implementation of Python program to connect the IOT device, findings and acknowledgements.
5. Unit tests (IE).

b) Suggested Co-Curricular Activities
1. Training of students by related industrial experts.
2. Assignments
3. Seminars, Group discussions, Quiz, Debates etc. (on related topics).
4. Presentation by students on best websites.

Course 7B: Application Development Using Python– PRACTICAL SYLLABUS

V. Learning Outcomes:
On successful completion of this practical course, student shall be able to:
1. Implement simple programs in Python
2. Implement programs related to various data structures like lists, dictionaries, etc.
3. Implement programs related to files.
4. Implement applications related to databases, Web services and IOT.

VI. Practical (Laboratory) Syllabus: (30 hrs.)

1. Write a menu driven program to convert the given temperature from Fahrenheit to Celsius and vice versa depending upon user’s choice.

2. Write a python program to calculate total marks, percentage and grade of a student. Marks obtained in each of the three subjects are to be input by the user. Assign grades according to the following criteria:
 - Grade A: Percentage >= 80
 - Grade B: Percentage>=70 and <80
 - Grade C: Percentage>=60 and <70
 - Grade D: Percentage>=40 and <60
 - Grade E: Percentage<40

3. Write a python program to display the first n terms of Fibonacci series.

4. Write a python program to calculate the sum and product of two compatible matrices.

5. Write a function that takes a character and returns True if it is a vowel and False otherwise.

6. Write a menu-driven program to create mathematical 3D objects
 - I. curve
 - II. sphere
 - III. cone
 - IV. arrow
 - V. ring
 - VI. Cylinder.

7. Write a python program to read n integers and display them as a histogram.

8. Write a python program to display sine, cosine, polynomial and exponential curves.

9. Write a python program to plot a graph of people with pulse rate p vs. height h. The values of P and H are to be entered by the user.

10. Write a python program to calculate the mass m in a chemical reaction. The mass m (in gms) disintegrates according to the formula m=60/ (t+2), where t is the time in hours. Sketch a graph for t vs. m, where t>=0.

11. A population of 1000 bacteria is introduced into a nutrient medium. The population p grows as follows:
 P (t) = (15000(1+t))/(15+ e)

12. Where the time t is measured in hours. WAP to determine the size of the population at given time t and plot a graph for P vs t for the specified time interval.

13. Input initial velocity and acceleration, and plot the following graphs depicting equations of motion:
 - I. velocity wrt time (v=u+at)
 - II. distance wrt time (s=u*t+0.5*a*t*t)
III. distance wrt velocity (\(s=(v^2-u^2)/2a \))

14. Write a program that takes two lists and returns True if they have at least one common member.

15. Write a Python program to print a specified list after removing the 0th, 2nd, 4th and 5th elements.

16. Write a program to implement exception handling.

17. Try to configure the widget with various options like: \(bg=\text{"green"}, \text{family=\"times\"}, \text{size=}20 \).

18. Write a Python program to read last 5 lines of a file.

19. Design a simple database application that stores the records and retrieve the same

20. Design a database application to search the specified record from the database.

21. Design a database application to that allows the user to add, delete and modify the records.
I. Learning Outcomes: Students after successful completion of the course will be able to:

1. Develop relevant programming abilities.
2. Demonstrate proficiency with statistical analysis of data.
3. Develop the ability to build and assess data-based models.
4. Demonstrate skill in data management
5. Apply data science concepts and methods to solve problems in real-world contexts and will communicate these solutions effectively

II. Syllabus: ((Total Hours: 90 including Teaching, Lab, Field training, Unit tests etc.)

UNIT I (10 hours)
Introduction: The Ascendance of Data, What is Data Science?, Finding key Connectors, Data Scientists You May Know, Salaries and Experience, Paid Accounts, Topics of Interest, Onward.
Python: Getting Python, The Zen of Python, Whitespace Formatting, Modules, Arithmetic, Functions, Strings, Exceptions, Lists, Tuples, Dictionaries, Sets, Control Flow, Truthiness, Sorting, List Comprehensions, Generators and Iterators, Randomness, Object-Orienting Programming, Functional Tools, enumerate, zip and Argument Unpacking, args and kwargs, Welcome to Data Sciencester!
Visualizing Data: matplotlib, Bar charts, Line charts, Scatterplots.
Linear Algebra: Vectors, Matrices

UNIT II (10 hours)
Statistics: Describing a Single Set of Data, Correlation, Simpson’s Paradox, some Other Correlation Caveats, Correlation and Causation.
Hypothesis and Inference: Statistical Hypothesis Testing, Example: Flipping a Coin, Confidence Intervals, P-hacking, Example: Running an A/B Test, Bayesian Inference.
Gradient Descent: The Idea behind Gradient Descent, Estimating the Gradient, Using the Gradient, Choosing the Right Step Size, Putting It All Together, Stochastic Gradient Descent.

UNIT III (10 hours)
Getting Data: stdin and stdout, Reading Files – The Basics of Text Files, Delimited Files, Scraping the Web - HTML and the parsing Thereof, Example: O’Reilly Books About Data, Using APIs – JSON (and XML), Using an Unauthenticated API, Finding APIs.
Working with Data: Exploring Your Data, Exploring One-Dimensional Data, Two Dimensions Many Dimensions, Cleaning and Munging, Manipulating Data, Rescaling, Dimensionality Reduction.

UNIT IV (10 hours)
Simple Linear Regression: The Model, Using Gradient Descent, Maximum Likelihood Estimation.
Multiple Regression: The Model, Further Assumptions of the Least Squares Model, Fitting the Model, Interpreting the Model, Goodness of Fit.

UNIT V (10 hours)
Neural Networks: Perceptron, Feed-Forward Neural Networks And Back propagation, Example: Defeating a CAPTCHA.
Clustering: The Idea, The Model, Example: Meetups, Choosing k, Example: Clustering Colors, Bottom-up Hierarchical Clustering.

III. References
1. Data Science from Scratch by Joel Grus O'Reilly Media
4. Web resources:
5. 9. Other web sources suggested by the teacher concerned and the college librarian including reading material.

IV. Co-Curricular Activities:

a) Mandatory: (Training of students by teacher in field related skills: (lab:10 + field: 05):
1. For Teacher: Field related training of students by the teacher in laboratory/field for not less than 15 hours on identifying, analyzing and presenting the data and then to predict the future instances.
2. For Student: Students shall (individually) search online and visit any of the agencies like Statistical cell, weather forecasting centers, pollution control boards, manufacturing industries, agriculture departments, etc. to observe the manual process going on to collect the data, maintain the data, present the data and to predict the data for future instances and submit a hand-written Fieldwork/Project work/Project work/Project work/Project work/Project work Report not exceeding 10 pages.
3. Max marks for Fieldwork/Project work/Project work/Project work/Project work/Project work Report: 05.
4. Suggested Format for Fieldwork/Project work/Project work/Project work/Project work: *Title page, student details, index page, details of place visited, observations, findings and acknowledgements.*
5. Unit tests (IE).

b) Suggested Co-Curricular Activities
1. Training of students by related industrial experts.
2. Assignments
3. Seminars, Group discussions, Quiz, Debates etc. (on related topics).
4. Presentation by students in related topics.

Course 6C: Data Science – PRACTICAL SYLLABUS

V. Learning Outcomes: On successful completion of this practical course, student shall be able to:

1. Apply data science solutions to real world problems.
2. Implement the programs to get the required data, process it and present the outputs using Python language.
3. Execute statistical analyses with Open source Python software.

VI. Practical (Laboratory) Syllabus: *(30 hrs.)*

1. Write a Python program to create a line chart for values of year and GDP as given below

2. Write a Python program to create a bar chart to display number of students secured different grading as given below
3. Write a Python program to create a time series chart by taking one year month wise stock data in a CSV file
4. Write a Python program to plot distribution curve
5. Import a CSV file and perform various Statistical and Comparison operations on rows/columns. Write a python program to plot a graph of people with pulse rate p vs. height h. The values of P and H are to be entered by the user.
6. Import rainfall data of some location with the help of packages available in R Studio and plot a chart of your choice.
A.P. State Council of Higher Education
Semester-wise Revised Syllabus under CBCS, 2020-21
Course Code:
Four -year B.Sc.(Hons)
Domain Subject: **Computer Science**
IV Year B. Sc.(Hons) – Semester – V
Max Marks: 100 + 50

Course 7C: Python for Data Science
(Skill Enhancement Course (Elective), Credits: 05)

I. **Learning Outcomes:** Students after successful completion of the course will be able to:

1. Identify the need for data science and solve basic problems using Python built-in data types and their methods.
2. Design an application with user-defined modules and packages using OOP concept.
3. Employ efficient storage and data operations using NumPy arrays.
4. Apply powerful data manipulations using Pandas.
5. Do data pre-processing and visualization using Pandas.

II. **Syllabus:** *(Total Hours: 90 including Teaching, Lab, Field training, Unit tests etc.)*

Unit - I (10 hours)

UNIT –II (10 hours)

UNIT –III (10 hours)

UNIT –IV (10 hours)

UNIT – V (10 hours)

Data Cleaning and Preparation: Handling Missing Data - Data Transformation: Removing Duplicates, Transforming Data Using a Function or Mapping, Replacing Values, Detecting and Filtering Outliers- String Manipulation: Vectorized String Functions in pandas.

Plotting with pandas: Line Plots, Bar Plots, Histograms and Density Plots, Scatter or Point Plots.

III. References

6. Web resources:
7. Other web sources suggested by the teacher concerned and the college librarian including reading material.

IV. Co-Curricular Activities:

a) Mandatory: (Training of students by teacher in field related skills: (lab:10 + field: 05):
1. For Teacher: Field related training of students by the teacher in laboratory/field for not less than 15 hours on collecting the data, analyzing the data and presenting the data using Python language with some real time data.
2. For Student: Students shall (individually) visit any of the agencies like Agriculture dept, statistical cell, irrigation department, Ground water department, CPO office, Rural Water Supply and Sanitation department etc or search online to get real time data like Aids database, weather forecasting database, social networking data, etc and identify any one database, implement and present the necessary charts in Python language and submit a handwritten Fieldwork/Project work/Project work/Project work/Project work Report not exceeding 10 pages. Example: Identifying a database, get the data, present the data in required charts and to predict the future instances if possible.
3. Max marks for Fieldwork/Project work/Project work/Project work/Project work Report: 05.
4. Suggested Format for Fieldwork/Project work/Project work/Project work/Project work:
 Title page, student details, index page, and details of place visited, observations, method of data collection, database identified, and implementation in Python language, other findings and acknowledgements.
5. Unit tests (IE).
b) Suggested Co-Curricular Activities
2. Training of students by related industrial experts.
3. Assignments
4. Seminars, Group discussions, Quiz, Debates etc. (on related topics).
5. Presentation by students on the topics within and outside the syllabus.

Course 7C: Python for Data Science – PRACTICAL SYLLABUS

V. Learning Outcomes: On successful completion of this practical course, student shall be able to:
1. Implement simple programs in Python.
2. Implement programs related to various structures like arrays, lists, Data frames, etc.
3. Implement programs related to files.
4. Implement applications related to data science.

VI. Practical (Laboratory) Syllabus: (30 hrs.)
1. Perform Creation, indexing, slicing, concatenation and repetition operations on Python built-in data types: Strings, List, Tuples, Dictionary, Set
3. Handle numerical operations using math and random number functions
4. Create user-defined functions with different types of function arguments.
5. Create packages and import modules from packages.
6. Perform File manipulations- open, close, read, write, append and copy from one file to another.
7. Write a program for Handle Exceptions using Python Built-in Exceptions
8. Write a program to implement OOP concepts like Data hiding and Data Abstraction.
9. Create NumPy arrays from Python Data Structures, Intrinsic NumPy objects and Random Functions.
10. Manipulation of NumPy arrays- Indexing, Slicing, Reshaping, Joining and Splitting.
11. Computation on NumPy arrays using Universal Functions and Mathematical methods.
12. Load an image file and do crop and flip operation using NumPy Indexing.
13. Create Pandas Series and Data Frame from various inputs.
14. Import any CSV file to Pandas Data Frame and perform the following:
 (a) Visualize the first and last 10 records
 (b) Get the shape, index and column details
 (c) Select/Delete the records (rows)/columns based on conditions.
 (d) Perform ranking and sorting operations.
 (e) Do required statistical operations on the given columns.
(f) Find the count and uniqueness of the given categorical values.
(g) Rename single/multiple columns

15. Import any CSV file to Pandas Data Frame and perform the following:
 (a) Handle missing data by detecting and dropping/ filling missing values.
 (b) Transform data using apply () and map() method.
 (c) Detect and filter outliers.
 (d) Perform Vectorized String operations on Pandas Series.
 (e) Visualize data using Line Plots, Bar Plots, Histograms, Density Plots and Scatter Plots.

=================================
Draft Syllabus prepared by:

1. Dr. A.V. Kavitha, Asst. Professor in Computer Science, Government Degree College for Women, Guntur.

2. Dr. M. Hussainaiah, Asst. Professor, Department of Computer Science, Vikram Simhapuri University, Nellore.